
Performance Evaluation of a Spontaneous
Reload Cache

Alex Interrante-Grant,
Northeastern University,

EECE7352

December 8, 2016

Modern computer processors implement an increasingly complex mem-
ory hierarchy in order to balance the trade-offs between cost, power, and
performance. One critical element of this hierarchy is the last level cache
(LLC) between the CPU and main memory since the time cost of a memory
access is high compared to a cache hit at any level. This paper examines
a proposed LLC optimization in the form of a novel cache design proposed
by Zhang et al. - the Spontaneous Reload cache. This paper shows that
the performance benefits of an SR cache are questionable and argue that its
implementation (outside of a simulation environment) is not as feasible as
originally proposed.

1 Introduction

Often referred to as overcoming the “memory wall,” optimizing interaction
between the processor and main memory remains one of the most important
problems in computer architecture [6]. As a result, there has been a con-
siderable amount of research in the area of cache design. Modern processors
implement a multi-layer cache between the processor and main memory. Fol-
lowing the conventions of the memory hierarchy, these caches are typically of
increasing size and decreasing access speed as they get closer to main mem-
ory. Most research in this area tends to focus on the performance of the

1



last level cache (LLC) as a miss in this cache forces the processor to access
significantly slower main memory.

One major focus of LLC research is the cache eviction algorithm [3] [5]
[2]. Although many novel and complex cache eviction algorithms are pro-
posed every year, most modern processors still implement some form of least
recently used (LRU) or pseudo LRU. As such, many performance increases
in processor caches are realized due to increasing the size of the LLC, rather
than implementing a novel eviction algorithm. This paper focuses on a novel
cache eviction algorithm, implementing it in a simulator and evaluating its
performance in comparison with LRU.

1.1 Background and Motivation

Zheng et al. proposed one such novel replacement strategy and cache design
which they refer to as a Spontaneous Reload (SR) cache [8]. Traditional
caches only reload non-resident data on a cache miss, relying on their chosen
cache eviction algorithm to decide which block in an associative cache set
to evict to make room for the requested block. An SR cache, on the other
hand, takes a more active role in cache maintenance, adding the possibility to
“spontaneously” reload cache blocks that are predicted to be used in the near
future, evicting those that are predicted not to be used soon. In addition, the
SR cache is not limited to updating the cache on a miss; it may spontaneously
reload data even on a cache hit.

Zheng et al. introduce two additional pieces of data that must be main-
tained for every cache block and a metric that can be computed from them:

Idle Count The number of cache accesses since this block was last accessed.

Reuse Interval The interval, in cache accesses, at which this cache block
is reused.

Reuse Distance = Reuse Interval - Idle Count

Because these data cannot feasibly be maintained for every block of main
memory, an SR cache will use some of its storage to maintain only the idle
count and reuse interval (but not the actual data) of some non-resident blocks
of main memory. It does this by dividing cache ways (associative sets) into
real blocks - those that are resident in cache - and virtual blocks - those
whose idle count and reuse interval is tracked but whose data is not resident.

2



Figure 1: SR Cache Architecture [8]

At every cache access, hit or miss, the SR cache finds the real block with
the maximum reuse distance and the virtual block with the minimum reuse
distance and, if the minimum virtual reuse distance is less than the maximum
real reuse distance, it reloads the cache block. On a cache hit, the hit block’s
reuse interval is set to its idle count and its idle count is reset to zero. Finally,
on a miss, as a default eviction strategy, the SR cache will evict the real block
with the greatest reuse distance.

The following implementation and simulations attempt to recreate Zhang
et al.’s results but ultimately cast doubt on the feasibility of the SR cache.

2 Implementation

In order to test the effectiveness of an SR cache under various workloads,
this analysis uses SimpleScalar [1] with a modified cache module. In order to
implement the SR cache, I modified the cache block struct to include three
additional fields - sr virtual, sr reuse interval, and sr idle count.

3



Figure 2: SimpleScalar SR Cache Block

Next, I modified the cache allocation function to allocate additional vir-
tual blocks at a given ratio to real blocks (SR DEGREE).

Figure 3: SimpleScalar SR Virtual Block Allocation

Then, I implemented the spontaneous reload functionality by finding the

4



virtual block with the smallest reuse distance and the real block with the
largest reuse distance (updating the idle count in the process). If the smallest
reuse distance virtual block is less than the greatest reuse distance real block,
the virtual block is marked as real and the real block is marked as virtual -
acting as a simulated reload operation.

Figure 4: SimpleScalar Cache Spontaneous Reload

Finally, I modified the default behavior on a miss for replacement block
selection such that the block with the greatest reuse distance is selected to
be replaced.

5



Figure 5: SimpleScalar SR Cache Replacement Algorithm

The following section explains the benchmarks used to evaluate perfor-
mance and presents experimental results.

3 Simulation

3.1 Methodology

The following five benchmarks were selected from SPEC CPU 2000 [9] and
SPEC CPU 2006 [10] to represent a diverse set of workloads to run on our
SR cache implementation.

6



Name Description
bzip2 In memory data compression
go Play the game go - an artificial intelligence task
hmmer Protein sequence analysis
mcf Network simplex vehicle scheduling
milc Gauge field generation - floating point

Table 1: Selected Benchmarks

These applications were cross-compiled for SimpleScalar under the Alpha
architecture. A number of them were already cross-compiled and binaries
were available online [7].

SimpleScalar’s sim-cache program was used to evaluate the cache perfor-
mance. The L1 cache configuration remained constant (see Table 2) and the
L2 associativity, block size, and replacement algorithm were varied according
to Table 3.

Name Size Associativity Block Size Replacement
L1 Data 32k 4-way 32 LRU
Instruction 32k 4-way 32 LRU

Table 2: L1 Cache Configuration

Test Size Associativity Block Size Replacement
1 2M 4-way 32 LRU
2 2M 4-way 32 SR
3 2M 8-way 32 LRU
4 2M 8-way 32 SR
5 2M 16-way 32 LRU
6 2M 16-way 32 SR
7 2M 4-way 64 LRU
8 2M 4-way 64 SR
9 2M 8-way 64 LRU
10 2M 8-way 64 SR
11 2M 16-way 64 LRU
12 2M 16-way 64 SR

Table 3: L2 Data Cache Configuration Tests

7



While the original proposal for this project suggested prefetching would
be evaluated, SimpleScalar does not support prefetching at the moment,
so varied block sizes will be examined instead. As is demonstrated below,
varying block sizes yielded noteworthy results.

3.2 Results

3.2.1 bzip2

Figure 6: bzip2 Results

The bzip2 benchmark is a modified version of bzip that handles the majority
of its data in memory so this benchmark gives us a relatively good idea of how
programs that operate on large volumes of data in memory will perform. This
likely explains why both algorithms benefit from a larger block size. Across
the board SR performs worse than LRU, likely because bzip2 doesn’t reuse

8



much data - after the data is compressed, bzip2 is done with it. Spontaneous
reloads here are likely to hurt performance.

3.2.2 go

Figure 7: go Results

Both algorithms here perform fairly well with this benchmark, again with
marginal improvements with increase block size. SR performed worse than
LRU again for much the same reason as before. Although the go benchmark
likely rereferences data (pieces on the board, etc.) it does not do so in a
predictable fashion. In other words, a block’s reuse distance is not likely to
be constant so spontaneous reloads based on predicted reuse distance, again,
probably hurt performance. As the associativity grows, so do the number of
virtual blocks that the SR cache could spontaneously reload from, so the SR
cache actually does not benefit from increased associativity here.

9



3.2.3 hmmer

Figure 8: hmmer Results

The hmmer benchmark searches large gene sequences - storing large amounts
of data in memory and searching through it. While both applications benefit
from increased block size, we see the same performance gap between LRU
and SR. As with the previous benchmarks, this is probably because the access
patterns are not regular or easily predictable, so spontaneous reloads end up
having a negative effect on performance.

10



3.2.4 mcf

Figure 9: mcf Results

This benchmark reveals a large performance gap at a block size of 32. Inter-
estingly, this performance gab disappears with an increased block size and SR
actually very slightly outperforms LRU. This probably occurs due to more
regular and predictable access patterns in the mcf benchmark on some struct
that is larger than a single block of size 32. Since mcf uses a network simplex
algorithm, these structs are probably nodes in a graph.

11



3.2.5 milc

Figure 10: milc Results

Here, we see similar results to the mcf benchmark - worse performance by
SR at block size 32 but very comparable performance at 64 - again probably
caused by some higher level language construct. Neither algorithm seems to
benefit from increased associativity in this case.

3.3 Discussion

These results do not show the increased performance that Zhang et al. claim
by using using their SR cache. However, on closer inspection of their results
and methodology there are a few clear reasons why.

First, the performance they show for a pure SR cache (like the one im-
plemented here) actually indicate that it performs about 20% worse than a

12



LRU in their testing (1.2 MPKI vs 1.0 MPKI for the programs they tested).
Indeed, this is in line with the results shown in this paper. It is not until
after they implement what they call a Dynamic SR cache - a cache that im-
plements both SR and LRU in parallel and selects the better performing one
- that they are able to show performance on par with and slightly improved
over LRU.

Second, the SR cache performs well in situations where access patterns
are highly regular and the same data are used frequently. In the context of
a higher level language, this would mean the SR cache performs well when
the same small set of variables is referenced often in a tight loop. Many
programs, however, operate on much larger data structures than the SR cache
can maintain virtual blocks to keep track of given it’s cache size limitations.

Finally, implementing an SR cache in a simulator requires liberties to
be taken that are not so easily achieved in hardware. Updating the idle
count for each block, real and virtual, stored in the cache on every access
would consume a considerable amount of power. Spontaneously reloading
data would increase traffic between the CPU and memory considerably and
draw substantially more power with the possibility of a memory access on
every cache access instead of just on cache misses.

4 Conclusion

Overcoming relatively slow storage technologies with effective caching schemes
is a constant battle for computer architects. While novel solutions are fre-
quently researched and proposed, few are feasible enough and provide enough
performance improvement to justify their implementation in a real processor
design. This paper has shown that, while Zhang et al.’s SR cache provides a
slight performance improvement in select cases, it does not outperform LRU
in general and would pose some real drawbacks if implemented in hardware.

13



References

[1] Austin, T., E. Larson, and D. Ernst. “SimpleScalar: An Infrastructure
for Computer System Modeling.” Computer 35.2 (2002): 59-67

[2] Chaudhuri, Mainak. “Pseudo-LIFO: The Foundation of a New Family of
Replacement Policies for Last-level Caches.” IEEE/ACM International
Symposium on Microarchitecture (2009)

[3] Hazelwood, Kim, James E. Smith. “Exploring Code Cache Eviction Gran-
ularities in Dynamic Optimization Systems.” International Symposium
on Code Generation and Optimization (2004)

[4] Henning, John. “SPEC CPU 2006 Documentation.” Standard Perfor-
mance Evaluation Corporation. Web.

[5] Jiang, Song, Xiaodong Zhang. “LIRS: An Efficient Low Inter-reference
Recency Set Replacement Policy to Improve Buffer Cache Performance.”
ACM SIGMETRICS (2002)

[6] McKee, Sally A. “Reflections on the Memory Wall.” 1st Conference on
Computing Frontiers (2004)

[7] Parihar, Raj. “SPEC CPU2006 Compilation for SimpleScalar/Alpha-
OSF.” University of Rochester, College of Electrical and Computer En-
gineering. Web.

[8] Zhang, Lunkai, Mingzhe Zhang, Lingjun Fan, Da Wang, and Paolo Ienne.
“Spontaneous Reload Cache: Mimicking a Larger Cache with Minimal
Hardware Requirement.” 2013 IEEE Eighth International Conference on
Networking, Architecture and Storage (2013)

[9] https://www.spec.org/cpu2000/

[10] https://www.spec.org/cpu2006/

14


